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INTRODUCTION METRHODS
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Several recent studies have shown how patterns of rsfMRI|c RESULTS
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In this study rsfMRI data were collected in 12 participants, o
were scanned continuously for 60 minutes at a temporal repg¢lu-
tion of 1s. Using these data, we evaluated pair-wise connegtjons
over the scale of minutes, investigating their polarity, strefpgth,
and variability. We evaluated the spatial distribution of three [cat /
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(B) Stable inter-network connections. The first is highlighted in red and thdecreases fast as scan duration shortens. For longer durations, although simil##td ventricle, indicanting artifactual signal from CFS regression. (B) 6 negat
second in green. These reported agreements between network groupings styokeeps increasing with scan length, it does so at a much lower rate. CVAR connections involve ROIs within the bilateral inferior parietal lobyle
gest that those connections share a common functional space. (IPL), with legitamate negatively fluctuating connections.
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